منابع مشابه
Skolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملK4-free graphs with no odd holes
All K4-free graphs with no odd hole and no odd antihole are three-colourable, but what about K4free graphs with no odd hole? They are not necessarily three-colourable, but we prove a conjecture of Ding that they are all four-colourable. This is a consequence of a decomposition theorem for such graphs; we prove that every such graph either has no odd antihole, or belongs to one of two explicitly...
متن کاملskolem odd difference mean graphs
in this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. let g = (v,e) be a graph with p vertices and q edges. g is said be skolem odd difference mean if there exists a function f : v (g) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : e(g) → {1, 3, 5, . . . , 2q−1} d...
متن کاملCodes associated with the odd graphs
Linear codes arising from the row span over any prime field Fp of the incidence matrices of the odd graphs Ok for k ≥ 2 are examined and all the main parameters obtained. A study of the hulls of these codes for p = 2 yielded that for O2 (the Petersen graph), the dual of the binary hull from an incidence matrix is the binary code from points and lines of the projective geometry PG3(F2), which le...
متن کاملGraphs with k odd cycle lengths
Gyarfas, A., Graphs with k odd cycle lengths, Discrete Mathematics 103 (1992) 41-48. 41 If G is a graph with k ~ 1 odd cycle lengths then each block of G is either K2k+Z or contains a vertex of degree at most 2k. As a consequence, the chromatic number of G is at most 2k + 2. For a graph G let L(G) denote the set of odd cycle lengths of G, i.e., L( G) = {2i + 1: G contains a cycle of length 2i +...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 1990
ISSN: 0195-6698
DOI: 10.1016/s0195-6698(13)80062-5